Classifying NFL Over/Unders

By: Mike Messina

Business Understanding

With sports gambling becoming legalized across the United States at a rapid pace,
more people than ever are gambling on sports because well, sports. Everyone
watches sports. Whether you grew up watching with your dad on the couch as he
yelled at the tv about his team. Or picked it up later in life when it was shoved down
your throat on every commercial on television. One doesn’t need to go to school to
“know sports” which is why everyone thinks they can be pretty good at gambling on
it.

Throughout the industry, the magic number in sports betting is 52.4%. This is the
golden win rate that all sports bettors strive for. You might ask: why not 51%? Well,
on a typical NFL bet, the sportsbook factor in a vig which is essentially a 10% deposit
on the amount you bet that you will get refunded if you win your bet, but you will
lose if you lose your bet. Because of the vig, one must strive for a 52.4% win rate.
This is the metric my model will be striving for in terms of accuracy.

There are multiple ways to bet on an NFL football game. You can bet on each team
winning straight up. You can use the lines set by oddsmakers to choose a team to
win or lose within a certain spread, and you can bet on the total amount of points
both team will score in the game, known as the over/under total (O/U). Before the
start of each game, oddsmakers will set a total amount of points that you can
choose to bet if the actual total amount of points will be over or under that
threshold. This is the bet | will be focusing on here.

The goal of this model is to take in as much pregame information as | can regarding
the game over the last 20 years, and see if | can identify if certain pregame factors
can tell me which side of the O/U is more likely to hit. | will be using a classification
model as | am are trying to predict the non-numeric result of if | should bet over, or
under the O/U total for the game.

Data Preparation

| began my search for a dataset that would incorporate the most pregame variables
we could find. Thanks to our friends over at Spreadspoke, who specialize in analyzing
sports odds information, | was able to obtain a data set that included 17 different
variables about every NFL football game played since 1966 which you can find on
Kaggle here: https://www.kaggle.com/tobycrabtree/nfl-scores-and-betting-
data#spreadspoke scores.csv. This comes in at 12,667 games.

To begin preparing this data, | first cut the amount of games by 7,351 to only
encompass the games from the seasons 2000 through 2018 which is 5,316 games. |
eliminated the years prior to 2000 as the game of football was played drastically
different than it is today. Running plays were much more common than passing so
weather might not have had as big of an impact back then as it does today as it is
harder to throw the ball in poor weather. Scoring was also lower in these earlier
years so the O/U line set for these games was most likely a lot lower than games
played within the past 20 years. Oddsmakers, with the help of computers, have also
gotten incredibly more accurate at setting these O/U lines so | wanted to be sure to
factor this in. | additionally eliminated the 2019 season as the data for these games
was incomplete.

While then turning my attention to the variables that were included in this data set, |
first tried to identify which variables were essentially repeated, which variables |
believed did not have a material effect on what we are trying to predict, and which
variables, if any, might be missing that could help our model.

| first removed the “weather_humidity” variable due to what | believe was a lack of
relevance to the model. | also removed “game_id” for lack of relevance as well.
These were the only two variables which | believed had little to no effect on how
many points were scored in a game.

| then wanted to add in a “result” variable which would actually tell us if the over or
the under hit for the game. This will be the variable my model is trying to predict. |
simply added this by taking the sum of the “score_home” and “score_away”
variables and if this sum was greater than the variable “over_under_line” then
“over” would be the result and vice versa. After adding this variable, | removed the
variables “score_home” and “score_away” as these would completely give away
what the model is trying to predict. This is also postgame information rather than
information that is known before the game which our model must only use.

Moving onto the variables that were repeated. | then removed “weather_detail” as
this is a repeated variable with “weather_temp” which is a much more consistent
variable in terms of the data within this column.

| then wanted to think about variables that could still be missing that could be
important to how many points are scored in a football game. | believe that knowing
how good each team playing was would be a great indicator. For example, games
with one team that is a lot better than the other team may be more likely to score
more total points. | decided | would add three variables here. “home_rank”,
“away_rank”, and “rank_diff”. To start, | took the count of how many times each
team appeared in the “team_favorite” column of the data. Each team was then
ranked 1 — 32 (32 being the worst). | then used vlookup with the ranks of each team
and whenever each team appeared in the “team_home” and “team_away” columns

to insert the “away_rank” and “home_rank” column data. | then took the difference
of these two columns to populate the “rank_diff” variable which would show that a
larger differential meant that two uneven teams were playing which might result in
more points. This could be thought of as a closely repeated variable with
“spread_favorite” variable but | believed that this was important enough
information to rank every team from the last 20 years.

After running a summary of the data at this point in R, | then identified that there
were 120 missing values for “weather_temp” and “weather_wind_mph”. You can
view this in figure 1 below:

Figure 1.

schedule_date schedule_season schedule_week schedule_playoff
1/1/12 : 16 Min. 12000 14 : 302 Mode :logical
1/1/17 : 16 1st Qu.:2004 15 : 302 FALSE:4848
1/2/@05 : 16 Median :2009 16 : 302 TRUE :209
1/2/11 : 16 Mean 12009 17 : 302
1/3/10 : 16 3rd Qu.:2014 1 : 301
1/3/16 : 16 Max. 12018 13 : 301
(0ther):4961 (Other):3247

team_home team_away
New England Patriots: 181 Baltimore Ravens : 169
Philadelphia Eagles : 166 Indianapolis Colts : 165
Pittsburgh Steelers : 166 Seattle Seahawks : 165
Indianapolis Colts : 165 Green Bay Packers : 164
Green Bay Packers : 164 New England Patriots: 163
Denver Broncos : 163 New York Jets . 163
(Other) 14052 (Other) 14068
team_favorite_id spread_favorite over_under_line
NE : 271 Min. :-26.500 Min. :30.00
PIT : 236 1st Qu.: -7.000 1st Qu.:39.50
IND : 218 Median : -4.500 Median :43.00
PHI : 216 Mean : -5.385 Mean :43.16
GB . 215 3rd Qu.: -3.000 3rd Qu.:46.50
DEN 1 207 Max. : 0.000 Max. :63.50
(Other):3694

stadium stadium_neutral

Giants Stadium : 166 Mode :logical
Lambeau Field : 163 FALSE:5000
Bank of America Stadium: 158 TRUE :57
Gillette Stadium : 158
M&T Bank Stadium : 158
Arrowhead Stadium . 157
(Other) 14097
weather_temperature weather_wind_mph weather_detail
Min. :-6.0 Min. : 0.000 C(lear 13658
1st Qu.:50.0 1st Qu.: 0.000 DOME 11167
Median :64.0 Median : 6.000 Rain : 106
Mean 160.4 Mean : 6.359 DOME (Open Roof): 56

3rd Qu.:72.0 3rd Qu.:10.000 Fog ;28

Max. :97.0 Max . :40.000 Rain | Fog i 22

NA's 1120 NA's 1120 (Other) . 20
home_rank away_rank rank_diff result
Min. :1.00 Min. :1.00 Min. : 0.00 Over :2538

1st Qu.: 8.00 1st Qu.: 8.00 1st Qu.: 5.00 Under:2519
Median :16.00 Median :16.00 Median : 9.00
Mean :16.13 Mean :16.19 Mean :11.28
3rd Qu.:24.00 3rd Qu.:24.00 3rd Qu.:17.00
Max. :32.00 Max. :32.00 Max. :31.00

Although this data that is missing is only 2.37%, it is still very important to my model.
As it is weather data and the games vary from city to city across the United States
with different climates, and the games vary at different times of the year where it
gets colder as the season goes on, | did not believe that replacing these values with
averages would be accurate. Instead, one can deduct that these missing variables
can be related to the name of the stadium in the “stadium” column (for location
purposes) and the “schedule_season” column that gives us the week of the season
(for the time of the year that the weather is like). | first made a separate table of all
the stadiums included in our dataset and pulled the average of these temperatures
and wind speeds from the applicable columns of the data for each week of the
season. | then ran a vlookup to identify the stadiums that were missing this weather
data and inserted the average temperature and wind speed for the given week in
the season in these locations. Our data is now 100% complete.

Some interesting variables of note when looking at the summary of data was the
average O/U line and the range that these fell in See figure 2 below for a histogram

of this variable

Figure 2.

count

30 40 50 60
over_under_line

The median O/U for the last 20 years was noted to be 43. This seems very moderate
to me and tells me that O/U lines are typically not very drastic. Not enough at least
to sway the median one way or the other. Figure 2 also tells us that the vast majority
of these lines all fall within 10 points of each other (40 - 50) which is quite small
when you consider one touchdown from one team alone is worth 6 points.

Another interesting thing to note from Figure 1 is that 92% of the games from this
past year occurred in non-inclement weather conditions. | did not expect this
number to be this high so my assumption that weather related variables having a
major effect on this model could prove to be false.

As we set our sights on modeling, | used a 70/30 train/test split of the data which |

believe was an optimal balance of introducing new data to the model given the large
size of the data set.

Modeling and Evaluation

Decision Tree

The first model | built to predict the result of the O/U was a decision tree. Due to the
size of the tree given the amount of variables in the dataset and the length of
variable names, an illustration of the tree was not useful to view. However, as we
built the model it was determined that 10 branches would be optimal as you can see
below in figure 3. A decision tree was chosen to model our data as | felt it would be
the quickest way to get a general idea of if what | was trying to classify was going to
be remotely possible and to get a baseline for variable importance.

Figure 3.

size of tree

1 10 20 32 60 85 190
L L

X-val Relative Error
1.00
|

0.90
l

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR AR
Inf 0.0075 0.0035 0.0018 0

cp

A 70/30 train/test split was used in the model which | thought was a fair spread to
find the right balance between an overfitted and underfitted model given the
dataset included 5,316 rows. The accuracy of this general decision tree came out to
49.41% (see figure 4) which is not exceptional, but not as bad as | thought it was
going to be. Remember, the target accuracy we’re shooting for is 52.4% so this is a
good first step. It’s concerning that the sensitivity (50.72%) is higher than the
specificity (48.08%) as | would much prefer to predict the result correctly than to be
wrong.

Figure 4.
Confusion Matrix and Statistics

Reference
Prediction Over Under
Over 386 392
Under 375 363

Accuracy : 0.4941
95% CI : (0.4686, 0.5196)
No Information Rate : 0.502
P-Value [Acc > NIR] : 0.7396

Kappa : -0.012

Mcnemar's Test P-Value : 0.5634
Sensitivity : 0.5072
Specificity : 0.4808

Pos Pred Value : 0.4961

Neg Pred Value : 0.4919
Prevalence : 0.5020

Detection Rate : 0.2546
Detection Prevalence : 0.5132
Balanced Accuracy : 0.4940

'"Positive' (Class : Over

After viewing the variable importance of the general decision tree in figure 5, | didn’t
expect to see the schedule date variable ranked as the most important variable.
Although the date of the game is directly related to the temperature and weather of
that game which | believe have the greatest effect on the amount of points scored in
a game, it appears reasonable to me that this would have some importance to the
model. But with the wind speed and weather detail variables ranked so low,
combined with the low accuracy metric, | am thinking that this general decision tree
won’t be a very useful model as we move forward.

Figure 5.

> tree$variable.importance

schedule_date team_home team_away
1176.31243 452.96874 420.00624
team_favorite_id stadium schedule_week
399.77922 313.11607 285.63020
schedule_season weather_temperature over_under_line
87.11938 85.71070 78.22390
spread_favorite home_rank away_rank
77.64700 76.25654 75.48929
rank_diff weather_wind_mph weather_detail
51.46295 46.74846 25.91582

schedule_playoff
16.88887

Given these poor metrics of our initial decision tree, | believe that pruning the tree
will be useful to hopefully eliminate some noise as we can reduce some complexity
of the tree. After pruning the tree, the accuracy of our decision tree model actually
decreased to 48.15% from 49.41% as seen in figure 6. The specificity value at least
became higher than the sensitivity which was good to see in the model. If we can
take one positive thing away here, it’s that our model doesn’t seem to be overfitted
since pruning the tree did not improve the accuracy of the model.

Figure 6.
Confusion Matrix and Stdtistits

Reference
Prediction Over Under
Over 361 386
Under 400 369

Accuracy : 0.4815
95% CI : (0.4561, 0.507)
No Information Rate : 0.502
P-Value [Acc > NIR] : 0.9472
Kappa : -0.0369

Mchemar's Test P-Value : 0.6429

Sensitivity : 0.4744
Specificity : 0.4887

Pos Pred Value : 0.4833

Neg Pred Value : 0.4798
Prevalence : 0.5020

Detection Rate : 0.2381
Detection Prevalence : 0.4927
Balanced Accuracy : 0.4816

'"Positive' Class : Over

As | stated previously on pg.3, the home and away rank and rank differential
variables that | added to the dataset could actually just be adding noise to the data
since they are so closely related to the spread variable. To see if this was true, |
removed these three variables which in turn, increased the accuracy of our decision
tree model to 49.87%. Although this is only a .04% increase, it still proves that these
variables were not helping the model and were simply adding to the already high
complexity of the data. See figure 7 for the confusion matrix of the decision tree
without these rank variables.

Figure 7.

Confusion Matrix and Statistics

Reference
Prediction Over Under
Over 375 374
Under 386 381

Accuracy : 0.4987
95% CI : (0.4732, 0.5242)
No Information Rate : 0.502
P-Value [Acc > NIR] : 0.6112
Kappa : -0.0026

Mcnemar's Test P-Value : 0.6899

Sensitivity : 0.4928
Specificity : 0.5046

Pos Pred Value : 0.5007

Neg Pred Value : 0.4967
Prevalence : 0.5020

Detection Rate : 0.2474
Detection Prevalence : 0.4941
Balanced Accuracy : 0.4987

'"Positive' Class : Over

To conclude, my three Decision Tree models had an average accuracy of 49.14%
with no model surpassing even 50% which is a losing model if we are betting on O/U
spreads over time.

K-Nearest Neighbor

As the Decision Trees didn’t show us optimal results, | decided to run the data
through a K-Nearest Neighbor model. Due to the near zero variance of the
“schedule_date” variable causing errors in the model, we simply eliminated this
variable as it is expressed in the “schedule_season” and “schedule_week” columns.
It was decided that 7 neighbors was optimal for our data (see figure 8).

Figure 8.
k-Nearest Neighbors

3541 samples
210 predictor
2 classes: 'Over', 'Under'

No pre-processing
Resampling: Cross-Validated (3 fold, repeated 3 times) ey I ! t ! =
Summary of sample sizes: 2360, 2361, 2361, 2361, 2361, 2360, .. \

Resampling results across tuning parameters:

o501 4 ’ L
k Accuracy Kappa

5 0.5005184 0.001054670
7 0.5019302 0.003875993
9 0.4985419 -0.002860663

0.500 L

0.499 \ Ot

Accuracy (Repeated Cross-Validation)

Accuracy was used to select the optimal model using the
largest value. 5 6 7 8 o
The final value used for the model was k = 7. #Neighbors

When running variable importance for the K-Nearest Neighbor model in figure 9,
these variables seemed a lot more reasonable than what was illustrated in the
Decision Tree variable Importance. With weather related variables being three of
the four most important variables to the model and even the Carolina Panthers
team and stadium being in the top 20 most important variables (Per tripsavvy.com,
Raleigh, NCis in the top 14 for wettest cities in the USA), this showed me that the K-
Nearest Neighbor model was probably going to be a better model for predicting the
0O/U result than a Decision tree.

Figure 9.

ROC curve variable importance

only 20 most important variables shown (out of 210)

Importance
weather_wind_mph 100.00
away_rank 79.76
weather_detail.Clear 52.41
weather_detail.DOME 51.98
schedule_week.5 49 .32
over_under_line 46.29
team_away . Indianapolis Colts 24 .60
schedule_week .4 23.33
schedule_week.1 22.79
team_favorite_id.CAR 21.44
schedule_week.12 20.76
schedule_week.11 20.72
team_away.Green Bay Packers 20.59
team_home.Carolina Panthers 19.44
stadium.Bank of America Stadium 19.44
stadium.FirstEnergy Stadium 19.42
team_favorite_id.NO 18.49
team_home.(Cleveland Browns 18.42
team_favorite_id.MIA 18.33

stadium.Lucas 0il Stadium 18.23

As seen from the confusion matrix of the K-Nearest Neighbor model in figure 10, the
accuracy of our K-Nearest Neighbor model still falls short of our 52.4% accuracy
target at 48.28% with even lower sensitivity and specificity metrics as our Decision
Tree model. This is surprising given how | believed the K-Nearest Neighbor model
was using more predictive variables than the Decision Tree yet we saw no
improvement in accuracy. As the accuracy measure falls using KNN, we would most
likely prefer the Decision Tree model at this point due to the cost of running each
model. Although, the AUC value of our ROC curve shows a favorable .501 value as it
is able to separate the over and under classes about half the time. Again, still short
about 2 percentage points of optimal for what we’re trying to do.

Figure 10.

Confusion Matrix and Statistics

Reference
Prediction Over Under
Over 364 387
Under 397 368

Accuracy : 0.4828

95% CI : (0.4574, 0.5083)
No Information Rate : 0.502
P-Value [Acc > NIR] : 0.9352

Kappa : -0.0343

Mcnemar's Test P-Value : 0.7479 2
Sensitivity : 0.4783 _ -
Specificity : 0.4874 £ e e
Pos Pred Value : 0.4847 s 3 o
Neg Pred Value : 0.4810 o
Prevalence : 0.5020 °
Detection Rate : 0.2401 =
Detection Prevalence : 0.4954 L L E m—
Balanced Accuracy : 0.4829 1008 06 04 02 00
Specificity

'"Positive' Class : Over

Naive Bayes

As we still have not seen adequate results from our previous two models, | decided
to at least see what a Naive Bayes model could do with the data. Although this
model assumes cold game temperatures to be completely unrelated to the schedule
date of the game, for example, maybe this is the kind of simplicity our data needs to
make a more accurate prediction of the O/U spread.

After running the data through a Naive Bayes classifier (as seen in figure 11), we
found our most accurate classifier yet at 51.45%. However, this mark is still lower
than 52.4% and the severe decline in specificity leaves a lot to be desired for our

purposes.

Figure 11.

Naive Bayes

3541 samples
154 predictor
2 classes: 'Over', 'Under'

No pre-processing

Resampling: Cross-Validated (3 fold, repeated 3 times)
Summary of sample sizes: 2360, 2361, 2361, 2361, 2361, 2360,
Resampling results across tuning parameters:

usekernel Accuracy Kappa
FALSE 0.5028699 0.005598662
TRUE 0.5061657 0.011061945

Tuning parameter 'fL' was held constant at a value of 0

Tuning parameter 'adjust' was held constant at a value of 1

Accuracy was used to select the optimal model using the
largest value.

The final values used for the model were fL = @, usekernel
= TRUE and adjust = 1.

Confusion Matrix dhd Sfatistics

Reference
Prediction Over Under
Over 540 515
Under 221 240

Accuracy

95% CI

No Information Rate
P-Value [Acc > NIR]

Kappa
Mchnemar's Test P-Value

Sensitivity
Specificity

Pos Pred Value

Neg Pred Value
Prevalence

Detection Rate
Detection Prevalence
Balanced Accuracy

'Positive’ Class

0.5145
(0.489, 0.54)
0.502
0.171

. 7096
.3179
.5118
.5206
.5020
.3562
.6959
.5137

Conclusion

To summarize, none of my models performed up to our positive expected value
benchmark of 52.4% accuracy. Looking back, this is most likely due to the complexity
of the variables in the dataset. However, the fact that each model was within 2% of
50% accuracy is impressive to me and illustrates that there is something to
predicting O/U totals in NFL games. Perhaps weather does not have as big of an
impact on point totals in football games as I initially believed. If we were to revisit
this in the future, | would actually like to incorporate some regression analysis into
the specific O/U totals set for each game to see if we can identify certain totals that
lean one way or the other more often that we can try and narrow our classifier on.
Perhaps we could look more into the variable importance for each model and cut
the amount of variables used in each model in half.

Model Accuracy
Decision Tree 49.41%
Decision Tree (Pruned) 48.15%
K-Nearest Neighbor 48.28%
Naive Bayes 51.45%

If we actually take a closer look at each O/U total from every NFL game from the
past 20 years in figure 12, it’s incredible to note that the Over has hit in 49% of all
games and the Under has hit in 51% of all games as seen in the grand total row of
the graph. This showcases incredible precision by oddsmakers to set these lines so
as to not give an edge to one side or the other and partially explains why each of our
models were hitting around the 50% mark. Only near the outliers of O/U totals do
you see any major lean one way or the other. So, if we can take anything away from
this project, it’s that you just can’t beat Vegas.

[2)

N - N N R T T T T B N B g
HoyWws
Da
—.
Yoy
Sg8

w &~
= =
g

Over/Under Since 2000

0%

10%

20%

30%

Figure 12.

40%

50%

mOver% mUnder%

60%

70%

80%

90%

100%

